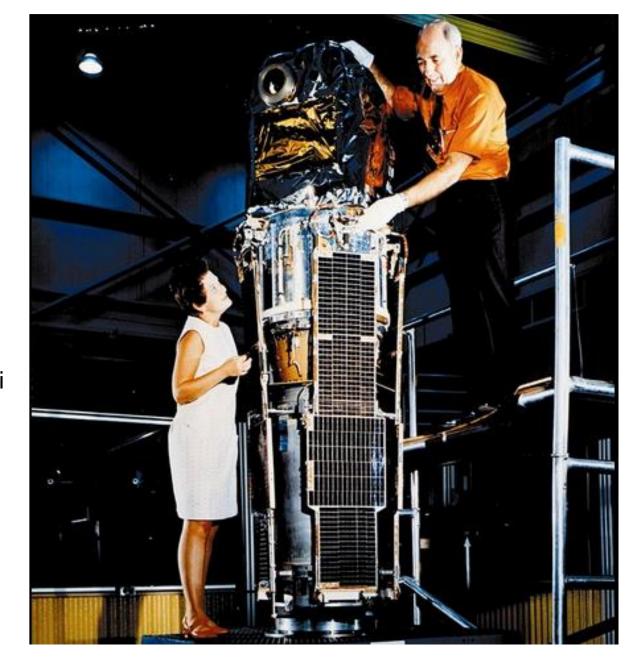
High Mass X-ray Binaries Across The Space Satellites

Dr. Ali Taani

Physics department Al-Balqa Applied University

&


Dr. Shigeyuki Karino

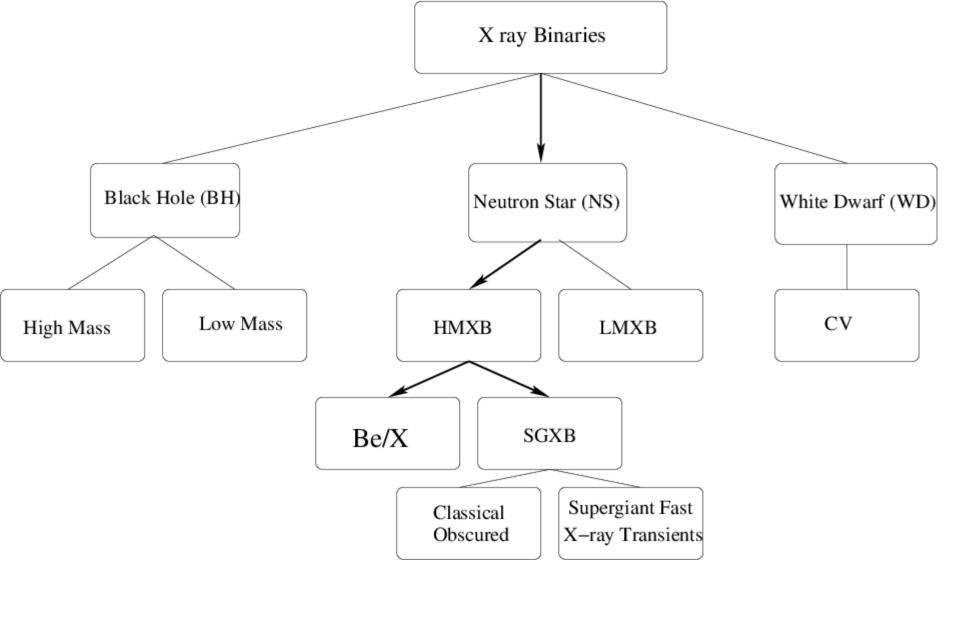
Kyushu Sangyo University, Japan

Introduction

- Small Astronomy Satellite (SAS) is the first Explorer satellite launched in 1958.
- Observational features of cyclotron resonance scattering detected through absorption lines in the spectra of magnetized accreting NSs.
- They form due to resonant scattering processes with electrons which are quantized in energy levels perpendicular to the magnetic field.
- Providing the direct observation for the cyclotron features and calculate the magnetic field (≥ 10^10-12 G) from electrons, protons.
- Since the first detection of a cyclotron line in the X-ray source
- Her X-1 by UHURU satellite in 1979, <u>36 sources have been</u> <u>discovered by many space satellites</u>.

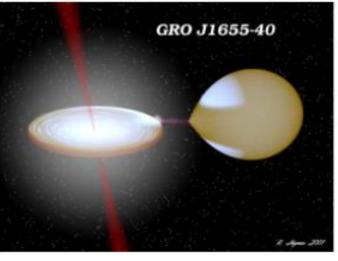
Marjorie Townsend discusses the X-ray Explorer Satellite's performance with Bruno Rossi at NASA's Goddard Space Flight Center.

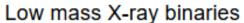
cyclotron radiation where electrons emit photons as they spiral around the magnetic field lines, resulting in a stable, non-oscillating shock.

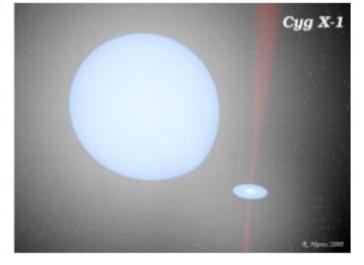


List x-ray space satellites

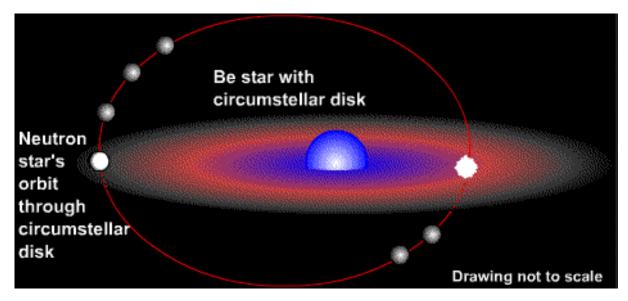
 X-Ray observations are made from a near-space environment on sounding rockets or high-altitude balloons.

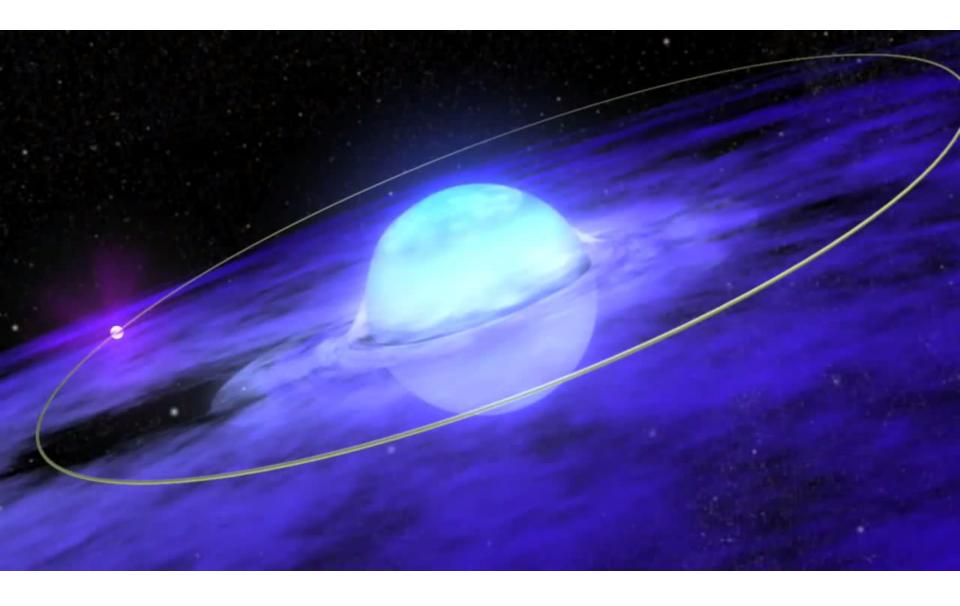

Name	Launch		Constellation-X Observatory	_	2008 proposal
A :- 1 5	4074		Copernicus	1972	
Ariel 5	1974		Cos-B	1975	
Ariel 6	1979		DXS	1993	
ASCA	1993		Einstein Observatory	1978	originally HEAO-2
ATHENA	_	Under development	EXOSAT	1983	
ACII E	2007		Fermi	2008	
AGILE	2007		Ginga	1987	
Apollo Telescope Mount	1973	Part of Skylab, ope	Granat	1989	
Arcus	_	Proposal	Gravity and Extreme Magnetism	_	2012 proposal
ALEXIS	1993		Hakucho	1979	
			Hard X-ray Modulation Telescope	2017	
ANS	1974		HEAO-1	1977	
Astrosat	2015		HEAO 3	1979	
BeppoSAX	1996		High Energy Transient Explorer	1996	
BBXRT	1990		Hinode	2006	
			Hinotori	1981	Originally ASTRO-A
Compton Gamma Ray Observatory	1991		Hitomi	2016	Originally ASTRO-H
Chandra X-rav Observatorv	1999		IXPE	_	Under development


INTEGRAL	2002	
International X-ray Observatory	_	2012 proposal
LOFT	_	Proposal
MAXI	2009	
Neil Gehrels Swift Observatory	2004	Originally Swift Gamn
NICER	2017	
NuSTAR	2012	
OAO-1	1966	
ORBIS	_	Under development
OSO 7	1971	
OSO 8	1975	
RHESSI	2002	
ROSAT	1990	
RXTE	1995	
SAS-3	1975	
SVOM	_	Proposal
Spektr-RG	_	Under development
Suzaku	2005	
Tenma	1983	
Uhuru	1970	


Magnetic fields in Neutron Stars

- HMXB- Accretion mainly via stellar wind;
 mainly NS with high B (~ 10^11-10^13 G) having a harder spectra;
- LMXB- Accretion via Roche-lobe overflow; BH transients; NS LMXBs- weaker B field (10^9-10^11 G) spectra softer mainly from the accretion disk & the surface; exhibit variability

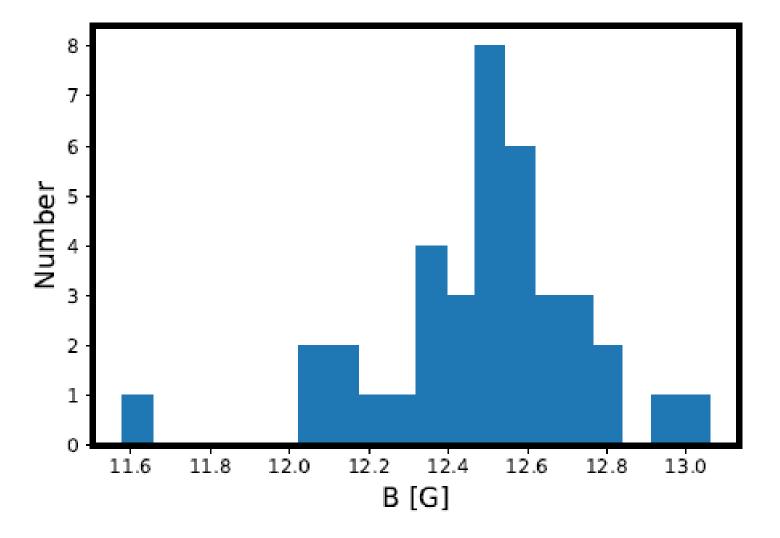



- Roche lobe overflow
- low mass companions
- old NSs
- accretion driven by an accretion disc

High mass X-ray binaries

- Wind fed accretion
- high mass companions
- young NSs
- a disc not always can form

HMXBs classifications


- Be X-ray binaries (a type B star with emission lines) form by far largest class of identified HMXBs (van den Heuvel 2004) in the Galaxy (~> % 80), P_orb ~15 d to several years, and with relatively low mass companions (\sim 8 to 20M \odot). Transient X-ray sources.
- **Supergiant** (SG) companion i.e. Cen X-1 and Vela X-1, only about a dozen known members, with short orbital periods (< 11 days) and the companions are very massive (\sim 18 to over 40M \odot).

Persistent X-ray emission,

Objectives...

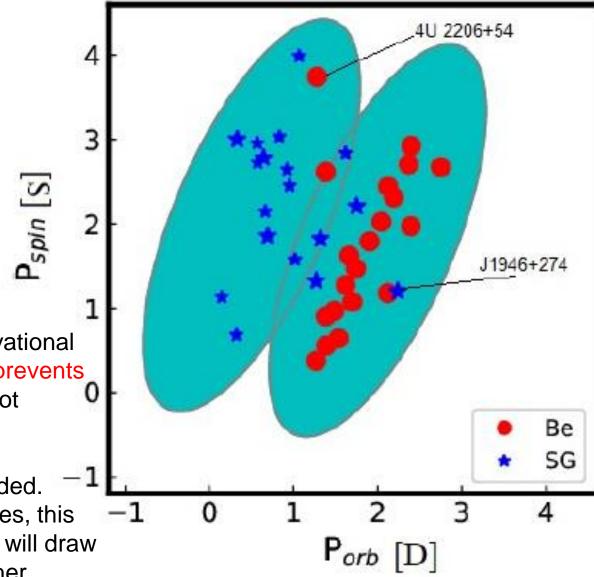

- Our aim is to use several X-ray spectra of HMXBs, in particular the detection of cyclotron lines, to study the P_spin, P_orb, M_dot, and B-field of the NSs to obtain clues about the evolution of HMXBs.
- Derive unknown parameters of HMXBs, such as wind velocity, wind mass loss rate and T_eff.
 These parameters influence significantly on the model of wind-fed binary systems and can be constrained the effects on binary evolution

Table 1: List of observational parameters of all known of HMXBs with cyclotron resonant scattering features								
Object	$P_{\rm spin}$	$P_{ m orbit}$	$E_{ m cyc}$	$B(1+z)^{-1}$	1 <i>B</i>	L_x	Distance	е Туре
	(s)	(d)	(keV)	$(10^{12}G)$	$(10^{12}G)$	$(10^{35} \text{ erg } s^{-1})$	(kpc)	
4U 0115+63	3.6 439	24.3 8.37	15 ± 0.15	1.3 1.6	$\frac{1.7}{2.1}$	700 35	7 4	Transient/ Be 1
4U 1907+09 4U 1538-52	529	3.73	18.8 ± 0.4 $21.4^{+0.9}_{-2.4}$	1.8	2.1	5.1	4.5	Persistent/SG5 Persistent/SG6
Vela X-1	283	8.96	54+0.5	4.7	6	60	1.9	Persistent/ SG1
Cen X-3	4.8	2.09	$30.4^{+0.3}_{-0.4}$	2.6	3.4	24.5	8	Persistent/ SG6
V0332+53	4.37	34.25	30+0.2	2.6	3.4	25	7	Transient/ Be 1
Cep X-4	66.3	20.85	$30.7^{+1.8}_{-1.0}$	2.6	3.4	60	3.8	Transient/ SG1
A 0535+26	105	111	50±0.7	4.3	5.6	80	2	Transient/ Be 3
GX 301-2	690	41.5	$42.4^{+3.8}_{-2.5}$	3.6	4.7	31.5	1.8	Persistent/ Be 6
LMC X-4 [†] 4U 0352+309	13.5 837	1.4 250	100 ± 2.1 $28.6^{+1.5}_{-1.7}$	8.6 2.5	11.2 3.2	1500 0.42	50 0.95	Persistent/ SG1: Persistent/ Be 6
OAO1657-415 [†]	37.7	10.4	36	3.1	4	48.7	6.4	Persistent/ SG3
J1946+274		169.2	2 < 2 + 0.5	3.1	4	300	9.5	Transient/SG 6
MXB 0656-072	160.4	56.2	22 0+05	2.8	3.7	130	3.9	Transient/SG 3
GX 304-1	275.46	132.5	53.7+8.7	4.6	6	45	2.4	Transient/Be 3
J16493-4348 [†] GS 1843+00	1069 29.5	6.78 55	33±4 20±0.45	2.8 1.7	3.7 2.2	6.8 30	6-26 10	Persistent/SG3 Transient/Be 4
1A1118-61	408	580	== -116	4.8	6	37	5	Transient/Be 4
J1008-57	93.5	247.8	79	7.6	300	9.9	5	Transient/Be 4
EXO 2030+375†			11.44±0.02	1	1.3	100	7.1	Transient/Be 3
J1626.6-5156 4U 1700-377	15	132 3.4	10 37	0.9 3.2	$\frac{1.1}{4.1}$	1.7 13	15 1.9	Transient/Be 4 Persistent/SG3
J01583+6713	469	561	35.3 ± 1.6	3	4	4	6.4	Transient/Be 5
4U 2206+54 2S 0114+65	5500 9700	19.11 11.6	29.6 ± 2.8	2.6 1.9	3.3 2.5	0.85 6.6	7.2	Persistent/Be 5 Persistent/SG 5
J1739-302†	_	51.5	30	2.6	3.4	42	2.3	Transient/SG 5
J18483-0311 [†]	21	18.6	3.3 32	0.3 2.8	0.4	0.22	3.3	Transient/SG 5
J0440.9+4431 J1409 - 619	205 506	155 233	44±3	3.8	3.6 4.9	20 0.7	3.3 14.1	Persistent/Be 6 Transient/Be 6
J18462-0223	997	_	30 ± 7	2.6	3.4	16	6	Transient/SG 6
J18179-1621		20-50	$20.8^{+1.4}_{-1.8}$	1.8	2.3	100	8	Transient/Be 6
J17544-261 2S 1553-542	71.5 9.27	4.9 30.6	20.8 ^{+1.4} 17 23.5±0.4	1.1	1.45	300 760	3.6 20 7	Transient/SG 6 Transient/Be 6
4U 1909+07	604	4.4	44	2.1 3.8	2.7 4.9	28	7	Transient/SG 6
J16393-4643	904	4.2		2.6	3.3	20	25	Persistent/SG6
J054134.7-68	61.6	80	29.3 ^{+1.1} 10 12.5	0.9	1.2	3000	0.02	Persistent/Be 6
KS 1947+300 IGR J18027-201	1808 140	41.5 4.6	23	2	1.4 2.6	3000 30	0.03	Transient/Be 7 Persistent/SG7
SMC X-2	2.4	18.6	12.5 23 27 31.5	1.1 2 2.3 2.7	2.6 3.1	5500		Transient/Be ?
J0520.5-69	8	24	31.5	2.7	3300	3.6		Transient/Be 7

Observational Data...

- Space telescopes
- Ginga, RXTE, BASTE, INTEGRAL, SWIFT, EXOSAT, Suzuku and HXMT...

We need to consider some observational biases1) to strong magnetic field prevents accretion onto NS and we could not observe such systems as bright X-ray sources.

2) More observational data is needed.

3) Besides such possibility of biases, this concentration around $B \approx 10^{12}$ G will draw a lot of interests and promote further studies of NS magnetic field

Table 2: The following table provides a sample of the all known harmonic cyclotron line features of HMXBs.

			•
Object	E_{cyc} (keV)	Reference	
4U 0115+63	15, 24, 36, 48,62	1,2,3,4	
4U 1907+09	18.8, 40	5,6,7	
Vela X-1	24, 54	8,9,10	
V0332+53	30, 51, 74	11,12,13,14	
A 0535+26	50, 100	10,15,1€	2
J1626.6-5156	10, 18	17,18 En -	$= \frac{m_e c^2}{\sin^2 \theta} \sqrt{(1 + 2n(\frac{B}{B_{crit}})\sin^2 \theta)} - 1$
EXO 2030+375	11, 63	3,19	$-\frac{1}{\sin^2\theta}\sqrt{(1+2n(\frac{1}{B_{crit}})\sin^2\theta)}-1$
J1739-302	30, 60	20	
Her X-1	36, 73	21,22,23,24	
4U 1538-52	22, 47	25,26,27,28	
1A1118-61	55, 110	28,29,30	T 11 (D (1)=1
J01583+6713	35, 67	31	$E_{\rm cyc} = 11.6B_{12}(1+z)^{-1}$
4U 2206+54	30, 60	32,33	
2S 0114+65	22, 44	34,35	
J1409 619	44,73, 128	36	
Cep X-4	30.7, 45	37	

For more detailed information please see

- Shigeyuki KARINO, Kenji NAKAMURA and <u>Ali TAANI</u>, Stellar wind accretion and accretion disk formation: applications to neutron star high mass X-ray binaries, Publications of the Astronomical Society of Japan (ACCEPTED).
- Ali Taani, Shigeyuki Karino, Liming Song, Mashhoor Al-Wardat, Awni Khasawneh and Mohammad Mardini, On the possibility of disk-fed formation in supergiant high-mass X-ray binaries, Research in Astronomy and Astrophysics, Vol. 19, 12
- <u>A. Taani</u>, S Karino, L Song, C. M. Zhang, S Chaty, A New Set of Parameters of High-Mass X-ray Binaries Found with their Cyclotron Lines. (to be submitted).
- <u>A. Taani</u>, S. Karino, L. Song, M. Al-Wardat, A. Khasawneh, M. Mardini and H. Al-Naimiy, On the wind accretion model of GX 301-2, Journal of Physics: Conference Series (under review).

Thank you for your Attention