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S- Process
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Tin: 116 Series of nuclear interaction leading
to the formation of heavy elements.
Successive capture of neutrons may
take 10 to 100 years
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Termination of the s-process cycle

The s-process terminates in

Bi and Po
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Bi is almost stable whereas
Po decays into Pb with a
lifetime of 138 days
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TYPE II SUPERNOVA

Layers are produced because of the lack of thermal convection
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Schematic illustrating the r-process as it occurs in supernovae or neutron star collisions.[1] Neutrons are rapidly
absorbed faster than the resulting nuclei can beta-decay; this allows the r-process to produce very neutron-rich
nuclei follow the neutron drip line. There are waiting points located at magic numbers N = 50, 82, 126, where
beta-decay is favored due to low neutron-capture cross sections resulting from the closed shells. The cycle then
repeats until the next waiting point, creating yet heavier nuclei of elements up to the actinides; the natural
abundance of these elements results entirely from the r-process. In the superheavy mass region (A = 270),
neutron-induced fission or spontaneous fission are expected to become dominant and end the r-process.




R- Process
Iron core collapse: 5-6 x 10° K
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R- Process

Iron core collapse:T = 5-6 x 10° K * °Fe is stable for only 6
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Binary Neutron Stars Merger

° Afterglow of Merging NS —» Multicomponent
Spectral Energy Distribution: Optical — NIR

o Afterglow is characterized by:
- Rapid fading of the UV and blue optical band
- Reddening of the optical/NIR colors.

Kilonova (optical/ NIR): Isotropic thermal transient
powered by radiative decay of rapid neutron capture
clements synthesized in the merger ejecta.




Example of NS Merger

GRB170817 NS Event: Heating from r — process
nuclel requires at least TWO components consistent
with lanthanide- poor and lanthanide-rich
opacities.

Each component arises from different region of the
ejecta.

We distinguish TWO types of Kilo nova:

RED kilo nova: Characterized by low velocity and
originates from ejecta tidal tails in the equatorial
plane of the binary.

BLUE Kilo nova: Characterized by high velocity and
originates from shock-heated polar region created
when NS collide.




Kilonova

* Kilonova is characterized by:

* Luminosity; Time Scale; Spectral Peak

* Optical Kilonova

* Ejecta rich with Fe group or light r-process nuclei
(A<140): L, ~10* —10* erg/sec, Time Scale :t, ~1day,
Spectral peak : Optical Wavelength

e Red Kilonova

* Ejecta rich with heavier lanthanide elements

(A>140): L, ~10%° —10* erg/sec, Time Scale :t, ~ 1week,
\_ Spectral peak : NIR Wavelength
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Neutron star + black hole

Neutron star + neutron star Neutron star + neutron star

Long-lived neutron-star remnant Remnant promptly collapses to black hole Black-hole remnant

1 | Schematic illustration of the components of matter eiected contribute. and are sensitive to the fate of the central mereer remnan

Figure 1 | Schematic illustration of the components of matter ejected from neutron-star mergers. Red colours
denote regions of heavy r-process elements, which radiate red/infrared light. Blue colours denote regions of light
r-process elements which radiate blue/optical light. During the merger, tidal forces peel off tails of matter, forming
a torus of heavy r-process ejecta in the plane of the binary. Material squeezed into the polar regions during the
stellar collision can form a cone of light r-process material. Roughly spherical winds from a remnant accretion disk

can also
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Figure 2 | Models of kilonovae demonstrating the observable signatures of r-process abundances. All models have
an ejecta mass M = 0.05M and velocity vk = 0.2¢, but different mass fractions of lanthanides Xlan. a, Model
bolometric light curves. If the ejecta is composed primarily of heavier r-process material (Xlan = 10-2) the opacity
is higher, resulting in a longer
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Figure 3 | Models of kilonovae demonstrating the spectral diagnostics of the ejecta velocity. The models all have
gjecta mass M = 0.03M. a, Spectra of models composed of light r-process material (Xlan = 10-4) observed 1.5 days
after the merger. Modest ejecta velocities (vk = 0.03¢, typical of supernovae) produce conspicuous absorption
spectral features. At higher velocities (vk = 0.1¢c-0.2c) the features are broadened and blended, while for vk = 0.3¢
the spectra are essentially featureless.
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A unified kilonova model explaining the optical/ linfrared
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A unified kilonova model explaining the optical/infrared counterpart of GW170817. The model is the
superposition of the emission from two spatially distinct ejecta components: a ‘blue’ kilonova (light r-
process ejecta with M = 0.025M, vk = 0.3c and Xlan = 10—4) plus a ‘red’ kilonova (heavy r-process ejecta
with M = 0.04M, vk = 0.15c and Xlan = 10—1.5). a, Optical-infrared spectral time series, where the black
line is the sum of the light r-process (blue line) and heavy r-process (red line) contributions. b,
Composite broadband light curves. The light r-process component produces the rapidly evolving
optical emission while the heavy r-process component produces the extended infrared emission. The
composite model predicts a distinctive colour evolution, spectral continuum shape and infrared
spectral peaks, all of which resemble the properties of AT 2017gfo.
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Cosmic origin of Elements in the Solar System

Many of the heaviest elements are coming from Neutron Stars Merger



CONCLUSION

® Neutron Stars Merger 1s the main source
of heavy clements in the Universe




